
Java Programming
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

Today’s Lecture

 Generics

 Collections

© 2022 Arthur Hoskey. All
rights reserved.

Collections

 Collection – A data structure that can hold
references to other objects.

 The collection itself is an object.

 For example…

© 2022 Arthur Hoskey. All
rights reserved.

Collections

 In general, a collection is just a bunch of
"things" that are stored together.

© 2022 Arthur Hoskey. All
rights reserved.

Collection

14329177835011

Java - ArrayList

Java - ArrayList

 ArrayList stores its objects just like a
normal array.

 Put values in and get values out of the
collection using an index.

 ArrayList resizes itself.

© 2022 Arthur Hoskey. All
rights reserved.

Generic Collections

Generic Collections

 A generic collection can store any type of object
inside of it.

 Old versions of Java collections only stored
objects of type "Object".

 When retrieving objects from the old Java
collections you had to "cast" them.

 With generics there is no need to cast.

 Generic collections store any reference type.

© 2022 Arthur Hoskey. All
rights reserved.

Collections and Primitive Types

Collections and Primitive Types

 Collections can only store objects.

 Is there a way to store a primitive type
inside of a collection?

© 2022 Arthur Hoskey. All
rights reserved.

Type-Wrapper Classes

 Is there a way to store a primitive type inside of
a collection?

YES

 You must use a type-wrapper class for the
primitive-type variable. Do the following:

1. Create an instance of the appropriate type-
wrapper class.

2. Store the primitive value in the type-wrapper
class instance.

3. Store the type-wrapper class object in the
collection.

© 2022 Arthur Hoskey. All
rights reserved.

Type-Wrapper Example

Integer[] ia;

Integer io;

// Create an array of type-wrapper

Integer[] ia = new Integer[5];

// Create type-wrapper and store primitve data

io = new Integer(10);

// Put the type-wrapper object in the array

ia[0] = io;

// Directly put an int in array

ia[0] = 10;

Use type-wrapper

to store primitive

data in a collection

Automatically

"boxes" the int 10 in

an Integer instance

"Box" the int 10 in

an Integer instance.

© 2022 Arthur Hoskey. All
rights reserved.

Type-Wrapper Example

Integer[] ia;

Integer io;

// Create an array

Integer[] ia = new Integer[5];

// Create type-wrapper

io = new Integer(10);

// Put the type-wrapper object in the array

ia[0] = io;

// Retrieve primitive data from collection

int value = ia[0].intValue();

Retrieve primitive

data from a

collection

© 2022 Arthur Hoskey. All
rights reserved.

Type-Wrapper Classes

 Boolean

 Byte

 Character

 Double

 Float

 Integer

 Long

 Short

Note: The type-wrapper classes are declared as
final.

© 2022 Arthur Hoskey. All
rights reserved.

Boxing and Unboxing

 Boxing – Converts a value of a primitive type to
an object of the corresponding type-wrapper
class.

 Unboxing –Converts an object of a type-
wrapper class to a value of the corresponding
primitive type.

© 2022 Arthur Hoskey. All
rights reserved.

Boxing and Unboxing

Boxing – Convert from a primitive type to a reference
type.

Unboxing – Convert back from reference type to a
primitive type.

Integer

2020

“Boxing”i

Integer

20 20

i“Unboxing”

int int

int int

© 2022 Arthur Hoskey. All
rights reserved.

Boxing and Unboxing

Integer[] ia;

Integer io;

// Create an array

Integer[] ia = new Integer[5];

// Create type-wrapper

io = new Integer(10);

// Put the type-wrapper object in the array

ia[0] = io;

// Retrieve primitive data from collection

int value = ia[0].intValue();

Boxing

Unboxing

© 2022 Arthur Hoskey. All
rights reserved.

Autoboxing and Autounboxing

 Later versions of Java can perform boxing and
unboxing automatically.

 This means you do not have to explicitly create
an instance of the type-wrapper class.

For example…

© 2022 Arthur Hoskey. All
rights reserved.

Autoboxing and Autounboxing

Integer[] ia;

Integer io;

// Create an array

Integer[] ia = new Integer[5];

// Create type-wrapper

io = 10;

// Put the type-wrapper object in the array

ia[0] = io;

// Retrieve primitive data from collection

int value = ia[0];

Autoboxing
Converts

automatically

Autounboxing
Converts

automatically

© 2022 Arthur Hoskey. All
rights reserved.

Collections

 Now on to collections…

© 2022 Arthur Hoskey. All
rights reserved.

Collection Interfaces

 The Java framework defines interfaces for
a number of different collection types.

 For example…

© 2022 Arthur Hoskey. All
rights reserved.

Partial Collection Interface
Hierarchy

 Partial collection interface hierarchy:

Collection

ListSet Queue

Map

Note: Map does not implement

the Collection interface

© 2022 Arthur Hoskey. All
rights reserved.

Collection Interfaces

Collection Interfaces

 Collection – Base interface. Contains common behaviors
of some other interfaces.

 List – An ordered collection that can contain duplicate
elements.

 Set – A collection that does not contain duplicates.

 Map – A collection that associates keys to values and
cannot contain duplicate keys.

 Queue – First-in, First-out (FIFIO) collection that models a
waiting line.

 Stored in the java.util package.

© 2022 Arthur Hoskey. All
rights reserved.

interface Collection<E>

interface Collection<E>

 Base interface for some other collection interfaces (not all).

 E stands for the data type of the items in the collection.

 Contains methods for the following categories of
operations:
◦ Adding

◦ Clearing

◦ Contains

◦ Removing

◦ Iterator

 Classes that implement this interface should have two
constructors:
◦ Default constructor

◦ Constructor that takes a Collection as a parameter.

© 2022 Arthur Hoskey. All
rights reserved.

interface List<E>

interface List<E>

 Inherits from Collection interface.

 An ordered collection.

 Can contain duplicates.

 Can manipulate elements in the list according to their
indices.

 Implemented by the following classes:

ArrayList, LinkedList, Vector

Note: ArrayList and Vector are basically both resizable
arrays. They differ with respect to thread synchronization
and a few other things.

© 2022 Arthur Hoskey. All
rights reserved.

Create a List

Create a List

 Create an empty list using ArrayList (ArrayList implements the List
interface):

List<String> myList = new ArrayList<>();

or

List<String> myList = new ArrayList<String>();

 Create a list from data using Arrays.asList (you can pass as many
parameters as you want):

List<String> myList = Arrays.asList("a", "b", "c");

 Create a list from an existing array:

String[] myArray = {"a", "b", "c"};

List<String> myList = Arrays.asList(myArray);

Note: Arrays is a prewritten class in the JDK that contains static helper
methods for dealing with arrays.

© 2022 Arthur Hoskey. All
rights reserved.

Instance type is inferred

from the variable data type

List Example

 List example. ArrayList implements the List
interface.

List<String> langList;

langList = new ArrayList<String>();

langList.add("Java");

langList.add("C++");

langList.add("Python");

for (String s : langList) {

System.out.println(s);

}

Declare interface reference

Create instance of ArrayList

Use List interface reference to

add items to the collection

© 2022 Arthur Hoskey. All
rights reserved.

Cannot Use Primitive Types in a
Collection

 Can only use reference types as the data type in
a collection.

List<int> myList = new ArrayList<>();

// Use the wrapper type instead of a primitive type

List<Integer> myList = new ArrayList<>();

myList.add(10);

CANNOT use a primitive type as the data type.

You will see a compile error similar to the following:

"Unexpected type, required reference, found int".

© 2022 Arthur Hoskey. All
rights reserved.

Will auto box the int data

List Interface and Custom
Collections

 You can write your own List collection.

 If you write a new class that contains a
collection of some sort you could have
your class implement the List interface.

© 2022 Arthur Hoskey. All
rights reserved.

General Description of Iterators

 Iterators – In general, objects which allow a
program to traverse through a collection.

 Internals of a collection may be hidden (private)
so there needs to be a way to access them all.

 Iterators are used to "visit" each element of a
collection.

© 2022 Arthur Hoskey. All
rights reserved.

General Description of Iterators

 Here is a collection with data (could be an array):

 If we want to print all items in this collection, we would not
be able to in this case.

Collection

20 40 30 70

User of the collection

may not have direct

access to the items it

contains

© 2022 Arthur Hoskey. All
rights reserved.

General Description of Iterators

 Iterators are helper classes that have access to the items
of the collection.

 An iterator "points at" one item of the class.

 In general, you can do the following with an iterator:
◦ Get data from the current item.

◦ Go to the next item in the collection.

◦ Some iterators allow you to traverse the collection in reverse.

◦ Some iterators allow you to remove items from the collection.

 For example…

© 2022 Arthur Hoskey. All
rights reserved.

General Description of Iterators

This iterator points at the first item of

the collection.

You can get the data (20) at that item

if you want but not any other item's

data.

Collection

20 40 30 70

Iterator

If we told the iterator to go to the next item then it would look like the

following….

Iterator now points at the second

item.

You can get the data in the second

item (40) but not the other items.

Collection

20 40 30 70

Iterator

© 2022 Arthur Hoskey. All
rights reserved.

interface Iterator<E>

interface Iterator<E>

 The Iterator interface allows you to traverse a
collection from beginning to the end (not in
reverse).

 Some methods:
◦ next – Returns the data at the current item and moves

the iterator to the next item.

◦ hasNext – Returns true if there is another item in the
collection and false otherwise.

© 2022 Arthur Hoskey. All
rights reserved.

interface Iterator<E>

interface Iterator<E>

 The Iterator interface allows you to traverse a
collection from beginning to the end (not in
reverse).

// Code to create langList here…

Iterator<String> iter;

iter = langList.iterator();

while (iter.hasNext()) {

String current = iter.next();

System.out.println(current);

}

Declare iterator reference

Get an iterator from a collection

(assumes langList was created

and populated with data)

Keep going while there is another item

Returns the current item

and moves the iterator to

the next item

© 2022 Arthur Hoskey. All
rights reserved.

interface ListIterator<E>

interface ListIterator<E>

 Iterator used specifically for a list.

 Derived from the Iterator<E> interface.

 Allows for:
◦ Traversing the list in reverse.

◦ Adding new items into the list at the iterator's current
location.

◦ Some other functionality as well.

© 2022 Arthur Hoskey. All
rights reserved.

interface ListIterator<E>

interface ListIterator<E>

 The ListIterator interface also allows you to
traverse a collection in reverse.

// Code to create langList here…

ListIterator<String> listIter2;

listIter2 = langList.listIterator(langList.size());

while (listIter2.hasPrevious())

{

String current = listIter2.previous();

System.out.println(current);

}

Get iterator to the last element by

giving the index (first call to previous

will return the item at size-1)

Keep going while there is a

previous item

Previous returns the previous item

in the list and moves the iterator

backwards in the list

Call listIterator (not iterator)

© 2022 Arthur Hoskey. All
rights reserved.

Converting a List to an Array

Converting a List to an Array

 Use List's toArray method.

 For example:

String[] myArray = myList.toArray(new String[0]);

 A new string array is passed in as a parameter.

 It will try and put the list data into this array and it will fail.

 Since the data will not fit (array size is 0) it will create
another array of the appropriate size and return it with all
the data inside.

© 2022 Arthur Hoskey. All
rights reserved.

Pass in 0 length

String array

Collections Class

Collections Class

 The Collections class is different than the
Collection interface discussed earlier.

 Contains methods that can be used to manipulate and
query a given collection.

 Only contains static methods.

 Here are a few of the methods on the Collections
class…

© 2022 Arthur Hoskey. All
rights reserved.

Collections Class Methods

Collections Class Methods

 sort – Sorts the elements of a list.

 binarySearch – Locates an object in a list.

 reverse – Reverses the elements of a list.

 shuffle – Randomly orders a List’s elements.

 min – Returns the smallest element in a
Collection.

 max – Returns the largest element in a
Collection.

 For an exhaustive list of methods go to:

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/Collections.html

© 2022 Arthur Hoskey. All
rights reserved.

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/Collections.html

sort

Collections Class Method (example for sort)

 The sort method puts the items in sorted order.

System.out.println("Original order");

for (String s : langList) {

System.out.println(s);

}

// Sort the list

Collections.sort(langList);

System.out.println("Sorted order");

for (String s : langList) {

System.out.println(s);

}

Call the sort method on

collections (it is a static method

so we call directly on the class)

Note: To sort a collection of a user-

defined class that class must

implement the Comparable interface.

© 2022 Arthur Hoskey. All
rights reserved.

Other Collections

 Now on to other collections.

 We will start with queues…

© 2022 Arthur Hoskey. All
rights reserved.

Queue

Queue

 An abstract data type in which elements are added to

the rear and removed from the front; a "first in, first out"

(FIFO) structure.

 With a queue you can only add items to the end of the

collection and remove items from the front.

 You only have access to the first item in the queue.

© 2022 Arthur Hoskey. All
rights reserved.

Queue
© 2022 Arthur Hoskey. All
rights reserved.

Queue – Logical View

 What operations would be appropriate for
a queue?

© 2022 Arthur Hoskey. All
rights reserved.

Queue – Logical View

 Transformers
◦ MakeEmpty
◦ Enqueue (Insert or Add)
◦ Dequeue (Delete or Remove)

 Observers
◦ IsEmpty
◦ IsFull



© 2022 Arthur Hoskey. All
rights reserved.

change state

observe state

Queue – Logical View

 What does a queue look like if we insert
the following elements (in the given
order):

14, 32, 11

© 2022 Arthur Hoskey. All
rights reserved.

Queue – Logical View

 Insert: 14, 32, 11

 Here is the resulting queue…

© 2022 Arthur Hoskey. All
rights reserved.

Queue

14 32 11

Front Rear

Queue – Logical View

 What if we remove an element?

 Where does it get removed from?

 Can we remove from in the middle?

© 2022 Arthur Hoskey. All
rights reserved.

Queue

14 32 11

Front Rear

Queue

14 32 11

Front Rear

Queue – Logical View

 What if we remove an element?

 Where does it get removed from? THE FRONT

 Can we remove from in the middle? NO

© 2022 Arthur Hoskey. All
rights reserved.

Queue – Logical View

 Queue after removing one element.

 Can we add an element after we remove. For
example, Enqueue(22)?

 Where does it get added?

© 2022 Arthur Hoskey. All
rights reserved.

Queue

32 11

Front Rear

 Queue after removing one element.

 Can we add an element after we remove. For
example, Enqueue(22)?

 Where does it get added? REAR

Queue

32 11

Front Rear

Queue – Logical View
© 2022 Arthur Hoskey. All
rights reserved.

22

interface Queue<E>

interface Queue<E>

 Inherits from Collection interface.

 add - Add to the end of the queue (enqueue).

 element – Gets first element of queue but does not remove
it. Should throw an exception if queue is empty (dequeue).

 peek – Same as element method except it returns null for
an empty queue instead of throwing an exception.

 remove – Gets and removes the first element. Should
throw an exception if queue is empty (dequeue).

 poll - Same as remove method except it returns null for an
empty instead of throwing an exception.

© 2022 Arthur Hoskey. All
rights reserved.

Create a Queue

Create a Queue

 Use LinkedList to create a normal queue with first in first out
behavior (FIFO).

Queue<Integer> myQueue = new LinkedList<>();

myQueue.add(14);

myQueue.add(32);

myQueue.add(11);

© 2022 Arthur Hoskey. All
rights reserved.

Create an instance of

LinkedList

Add data to

the queue

Printing the data in

myQueue will show:

14

32

11

Make sure to include

the "diamond" operator

<>

Priority Queue – Logical View

Priority Queue

 Similar to a queue except items are removed from the queue in

priority order.

 The highest priority item is always first in the queue.

 For a priority queue of class type items, we must state how to

compare items with each other.

 For example, we may have a priority queue of Employee objects.

 We could define that an employee with a higher salary has a higher

priority.

 Create a class that implements the Comparator interface. This class

will define how items are compared with each other.

© 2022 Arthur Hoskey. All
rights reserved.

Priority Queue – Logical View

 What does a priority queue look like if
we insert the following elements (in the
given order):

14, 32, 11

© 2022 Arthur Hoskey. All
rights reserved.

Priority Queue – Logical View

 Insert: 14, 32, 11

 Here is the resulting queue from a logical
perspective…

© 2022 Arthur Hoskey. All
rights reserved.

Priority Queue (items are in priority order)

11 14 32

Front Rear

 Now Enqueue(22)?

 22 will get added in the place according to its priority.

Priority Queue (items are in priority order)

11 14

Front Rear

Priority Queue – Logical View
© 2022 Arthur Hoskey. All
rights reserved.

22 32

 A priority queue feels like it has its items one after another in order
but that is not actually the case.

 Java's priority queue stores data in a heap (ordered by level in heap).

Priority Queue Logically

 11 14

Front Rear

Priority Queue – Logical vs Actual
Storage View

© 2022 Arthur Hoskey. All
rights reserved.

22 32

Priority Queue Actual (Heap)

14

11

32

22

Root

Class PriorityQueue<E>

class PriorityQueue<E>

 Implements the Queue<E> interface.

 A collection class that allows retrieving data in priority order.

 It stores data as a heap internally (highest priority item is always
in the root).

Note: If you use an iterator to traverse a PriorityQueue you are not
guaranteed to see the data in priority order. Heaps are only partially
ordered. To see all the data in order you will have to continually
remove items and print them as you remove them.

The following is taken directly from the JDK documention:

"The Iterator provided in method iterator() and the Spliterator
provided in method spliterator() are not guaranteed to traverse the
elements of the priority queue in any particular order."
Link: https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/PriorityQueue.html

© 2022 Arthur Hoskey. All
rights reserved.

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/PriorityQueue.html

Create a Priority Queue

Create a Priority Queue

 Create an empty queue using PriorityQueue:

Queue<Integer> myQueue = new PriorityQueue<>();

myQueue.add(14);

myQueue.add(32);

myQueue.add(11);

© 2022 Arthur Hoskey. All
rights reserved.

Create an instance

of PriorityQueue

Add data to

the queue

Removing and printing the

data in myQueue will show

data in priority order:

11

14

32

Make sure to include

the "diamond"

operator <>

Priority Queue of Class Type

PriorityQueue of Class Type – Create Comparator Class

 Need to let the priority queue know how to compare items.

 Define a class that implements the Comparator interface.
class Employee {

private String name;

private int salary;

// Get/Set methods here

}

public class EmployeeComparator implements Comparator<Employee> {

public int compare(Employee e1, Employee e2) {

if (e1.getSalary() < e2.getSalary())

return 1;

else if (e1.getSalary() > e2.getSalary())

return -1;

return 0;

}

}

© 2023 Arthur Hoskey. All
rights reserved.

Compares employees

based on salary

Compare returns 0, 1, or -1

Returns 0 if equal

Returns 1 if e1 salary is less

Return -1 if e1 salary is greater

Implement the

Comparator interface

Create a Priority Queue with a
Comparator

Create a Priority Queue with a Comparator

 Create an empty queue that uses a comparator.

 An instance of comparator should be passed into the
PriorityQueue constructor.

 The PriorityQueue will now use the comparator to arrange its
items (highest priority item is always first).

EmployeeComparator empComp = new EmployeeComparator();

Queue<Employee> myQueue = new PriorityQueue<>(empComp);

© 2023 Arthur Hoskey. All
rights reserved.

Pass in the

comparator

This queue contains

Employee objects

Create an instance

of the comparator

Other Collections

 Now on to sets…

© 2022 Arthur Hoskey. All
rights reserved.

Set

Set

 Sets are generally unordered and CANNOT
contain duplicates.

© 2022 Arthur Hoskey. All
rights reserved.

Set

yfqtzha

interface Set<E>

interface Set<E>

 Inherits from Collection interface.

 Unordered collection.

 Classes that implement this interface should not allow
duplicates in their collection.

© 2022 Arthur Hoskey. All
rights reserved.

Set

Java Set Implementation Classes

 HashSet – Uses a hash table internally.

 LinkedHashSet – Uses a hash table internally but also
maintains a doubly linked list to keep the insertion order.

 TreeSet – Uses a tree internally. Stores data in sorted
order.

 Differences between them are the "speed" of specific
operations.

 For example, when using an average case data set HashSet
has a O(1) search time while TreeSet has a O(log n) search
time.

© 2022 Arthur Hoskey. All
rights reserved.

Create a Queue (HashSet)

Create a Set (HashSet)

 Create an empty set using HashSet:

Set<Integer> mySet = new HashSet<>();

mySet.add(14);

mySet.add(32);

mySet.add(32);

mySet.add(11);

mySet.add(11);

mySet.add(11);

for (Integer i : mySet) {

System.out.println(i);

}

© 2022 Arthur Hoskey. All
rights reserved.

Create an instance

of HashSet

Add data to

the set

Printing mySet shows no

duplicates and insertion order

is NOT preserved:

32

11

14

Make sure to include

the "diamond"

operator <>

Create a Set (LinkedHashSet)

Create a Set (LinkedHashSet)

 Create an empty set using LinkedHashSet:

Set<Integer> mySet = new LinkedHashSet<>();

mySet.add(14);

mySet.add(32);

mySet.add(32);

mySet.add(11);

mySet.add(11);

mySet.add(11);

for (Integer i : mySet) {

System.out.println(i);

}

© 2022 Arthur Hoskey. All
rights reserved.

Create an instance

of LinkedHashSet

Printing mySet shows no

duplicates and insertion order

IS preserved:

14

32

11

Create a Set (TreeSet)

Create a Set (TreeSet)

 Create an empty set using TreeSet:

Set<Integer> mySet = new TreeSet<>();

mySet.add(14);

mySet.add(32);

mySet.add(32);

mySet.add(11);

mySet.add(11);

mySet.add(11);

for (Integer i : mySet) {

System.out.println(i);

}

© 2022 Arthur Hoskey. All
rights reserved.

Create an instance

of TreeSet

Printing mySet shows no

duplicates and data in

SORTED order:

11

14

32

Set

Hashset, Treeset, LinkedHashSet all behave
like a traditional set.

Again, the differences between them are
the "speed" of specific operations.

© 2022 Arthur Hoskey. All
rights reserved.

Other Collections

 Now on to maps…

© 2022 Arthur Hoskey. All
rights reserved.

Map

Map

 Maps associate one value with another value.

 Data are stored as key-value pairs.

 This map associates String objects to Integer objects.

 The team is the key and the number is the value.

© 2022 Arthur Hoskey. All
rights reserved.

Map

1"Yankees"

2"Phillies"

3"Red Sox"

Keys Values

interface Map<K, V>

interface Map<K, V>

 Does NOT inherit from Collection interface.

 Associates keys with values.

 K is the key data type.

 V is the value data type.

© 2022 Arthur Hoskey. All
rights reserved.

Map Classes

Java Map Implementation Classes

 HashMap – Uses a hash table internally. Faster
lookup time than TreeMap.

 TreeMap – Uses a tree internally.

 Main differences between them are the "speed"
of specific operations.

© 2022 Arthur Hoskey. All
rights reserved.

Create a Map (HashMap)

Create and Use Map (HashMap)

 Create an empty map using HashMap:

Map<String, Integer> myMap = new HashMap<>();

myMap.put("Yankees", 1);

myMap.put("Phillies", 2);

myMap.put("Red Sox", 3);

Integer value = myMap.get("Yankees");

System.out.println(value);

© 2022 Arthur Hoskey. All
rights reserved.

Create an instance

of HashMap

Add data to

the map

Make sure to include

the "diamond"

operator <>

Get the value associated

with the key "Yankees"

get will return null if the

key is not found

Key

Type

Value

Type

Value Key

Show Map Data

Show Map Data

 Print all key-value pairs:

for (Map.Entry<String,Integer> entry : myMap.entrySet()) {

System.out.println(entry.getKey() + ", " + entry.getValue());

}

 Print all keys:

for (String key : myMap.keySet()) {

System.out.println(key);

}

 Print all values:

for (Integer v : myMap.values()) {

System.out.println(v);

}

© 2022 Arthur Hoskey. All
rights reserved.

Create a Map (TreeMap)

Create and Use Map (TreeMap)

 Create an empty map using TreeMap:

Map<String, Integer> myMap = new TreeMap<>();

myMap.put("Yankees", 1);

myMap.put("Phillies", 2);

myMap.put("Red Sox", 3);

Integer value = myMap.get("Yankees");

System.out.println(value);

© 2022 Arthur Hoskey. All
rights reserved.

Create an instance

of TreeMap

Add data to

the map

Make sure to include

the "diamond"

operator <>

Get the value associated

with the key "Yankees"

End of Slides

 End of Slides

© 2022 Arthur Hoskey. All
rights reserved.

	Slide 1: Java Programming
	Slide 2: Today’s Lecture
	Slide 3: Collections
	Slide 4: Collections
	Slide 5: Java - ArrayList
	Slide 6: Generic Collections
	Slide 7: Collections and Primitive Types
	Slide 8: Type-Wrapper Classes
	Slide 9: Type-Wrapper Example
	Slide 10: Type-Wrapper Example
	Slide 11: Type-Wrapper Classes
	Slide 12: Boxing and Unboxing
	Slide 13: Boxing and Unboxing
	Slide 14: Boxing and Unboxing
	Slide 15: Autoboxing and Autounboxing
	Slide 16: Autoboxing and Autounboxing
	Slide 17: Collections
	Slide 18: Collection Interfaces
	Slide 19: Partial Collection Interface Hierarchy
	Slide 20: Collection Interfaces
	Slide 21: interface Collection<E>
	Slide 22: interface List<E>
	Slide 23: Create a List
	Slide 24: List Example
	Slide 25: Cannot Use Primitive Types in a Collection
	Slide 26: List Interface and Custom Collections
	Slide 27: General Description of Iterators
	Slide 28: General Description of Iterators
	Slide 29: General Description of Iterators
	Slide 30: General Description of Iterators
	Slide 31: interface Iterator<E>
	Slide 32: interface Iterator<E>
	Slide 33: interface ListIterator<E>
	Slide 34: interface ListIterator<E>
	Slide 35: Converting a List to an Array
	Slide 36: Collections Class
	Slide 37: Collections Class Methods
	Slide 38: sort
	Slide 39: Other Collections
	Slide 40: Queue
	Slide 41: Queue
	Slide 42: Queue – Logical View
	Slide 43: Queue – Logical View
	Slide 44: Queue – Logical View
	Slide 45: Queue – Logical View
	Slide 46: Queue – Logical View
	Slide 47: Queue – Logical View
	Slide 48: Queue – Logical View
	Slide 49: Queue – Logical View
	Slide 50: interface Queue<E>
	Slide 51: Create a Queue
	Slide 52: Priority Queue – Logical View
	Slide 53: Priority Queue – Logical View
	Slide 54: Priority Queue – Logical View
	Slide 55: Priority Queue – Logical View
	Slide 56: Priority Queue – Logical vs Actual Storage View
	Slide 57: Class PriorityQueue<E>
	Slide 58: Create a Priority Queue
	Slide 59: Priority Queue of Class Type
	Slide 60: Create a Priority Queue with a Comparator
	Slide 61: Other Collections
	Slide 62: Set
	Slide 63: interface Set<E>
	Slide 64: Set
	Slide 65: Create a Queue (HashSet)
	Slide 66: Create a Set (LinkedHashSet)
	Slide 67: Create a Set (TreeSet)
	Slide 68: Set
	Slide 69: Other Collections
	Slide 70: Map
	Slide 71: interface Map<K, V>
	Slide 72: Map Classes
	Slide 73: Create a Map (HashMap)
	Slide 74: Show Map Data
	Slide 75: Create a Map (TreeMap)
	Slide 76: End of Slides

